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Algorithm

In LED-A, PMI Levenshtein is implemented in almost the same way as described in Wieling (2012). 
Just like Wieling (2012), the algorithm is VC-sensitive and we use the so-called diagonal-exclusive 
version (see p. 19, 25-27). However, the swap operation is not implemented in LED-A.

The algorithm learns the weights (segment distances) from the alignments. This is done through a 
series of iterations. In each iteration Levenshtein distances of k word pairs for each of (n * (n-1))/2 
dialect pairs of n dialects are calculated.

In the first iteration all insertions, deletions and substitutions have a weight of 1. However, since 
the algorithm is VC-sensitive, 'forbidden' sound segment combinations have a distance of 99999 in 
the initial segment distance matrix. These high distances prevent vowels to be aligned with 
consonants and vice versa. The hight distances are kept troughout all iterations.

In LED-A the user can choose to allow [i], [u], [j] and [w] to match with anything (and vice versa), 
and [ə] and [ɐ] to match with a sonorant (and vice versa).

When the distances are calculated, the alignments are examined. Segment pairs that occur at least
one time in an alignment get as PMI value:

log2((pxy/(px*py)) + 1)

where:

 pxy is estimated by calculating the number of times sound segments x and y occur in 
correspondence in two aligned pronunciations X and Y, divided by the total number of 
aligned segments (i.e. the relative occurrence of the aligned sound segments x and y in the 
whole dataset);

 px and py are estimated as the number of times sound segment x (or y) occurs, divided by 
the total number of segment occurrences (i.e. the relative occurrence of sound segments x 
or y in the whole dataset); dividing by this term normalizes the correspondence frequency 
with respect to the frequency expected if x and y are statistically independent (see Wieling 
2012, p. 18).

Allowed segment combinations that are not found in any alignment are given as ‘PMI’ value:

log2(0 + 1) = 0
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The PMI distances are scaled between 0 and 1 by calculating:

(maxPMI - PMI) / (maxPMI – minPMI)

so that most frequent segment pairs get a distance of 0, and the least frequent segment pairs get a
distance of 1. 

Note that both the distances of segment pairs with equal segments and the distances of segment 
pairs that have the highest frequency (i.e. maxPMI) are 0.

Note that also distances between ‘nothing’ and segments (representating insertions) and between 
segments and ‘nothing’ (representing deletions) are likewise calculated. In fact, 'nothing' is treated
as a sound segment.

In the next iteration Levenshtein distances of k word pairs for each of (n * (n-1))/2 dialect pairs of n
dialects are calculated again. But now the segment distances (i.e.scaled PMI distances) that were 
calculated in the previous iteration are used as operation weights. The resulting alignments are 
checked and new segment distances are calculated.

The iterations are repeated until the correlation between the segment distances that were 
calculated in the current iteration and the segment distances that were calculated in the previous 
iteration (and used in the current iteration) is equal to or lower than the previous obtained 
correlation. In other words, iterations are repeated as long as the correlation is increasing.

When correlating the segment distances calculated in  the current iteration with the segment 
distances in the previous iteration, the high distances between segments of ‘forbidden’ pairs 
segment pairs are not considered. Here we differ from the approach of Wieling (2012). Note also 
that allowed segment pairs that did not occur in the alignment get the (scaled) maximum PMI 
distance of 1. In the approach of Wieling (2012) these pairs get a high distance so that they will not
occur any more in subsequent iterations. In our approach, a segment pair that was not found in a 
current iteration is theoretically not completely blocked, but can still appear in subsequent 
iterations.

Normalization

In LED-A the user can choose the raw Levenshtein distances to be divided by the alignment length. 
In order to do this, first the maximum weight for indel (=insertion and deletion) slots and for 
substitution slots is determined. We call them respectively maxIndel and maxSubst. Then the 
length of the alignment is equal to:

number of indels × maxIndel +  number of substitutions (incl. matches) × maxSubst

In other words: the length of the alignment is equal to the sum of all maximum penalties per slot. 
When using PMI, maxIndel and maxSubst are recalculated in each iteration.
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