LED-A: a web app for measuring distances in the sound components among local dialects

Wilbert Heeringa & Vincent van Heuven & Hans Van de Velde FRYSKE ♣ AKADEMY

> Methods XVII Mainz, August 1, 2022

Introduction

- We present a new app for measuring dialect variation with Levenshtein distance.
- Proposed by Vladimir Levenshtein in 1965.
- Introduced in dialectology by Brett Kessler in 1995.
- He measured linguistic distances among Irish Gaelic dialects.
- Later widely used for many other language varieties.
- Calculate the cost of changing one string of characters into another.

Levenshtein distance

- Example: milk is pronounced as [mɛlək] in the dialect of Haarlem and as [mɔlkə] in the dialect of Grouw.
- Find cheapest mapping of [mɛlək] → [mɔlkə]:

cumulative maxim.cost	1	2	3	3.5	4.5	5
	m	3		Э	k	
	m	Э			k	Э
actual cost		1		0.5		0.5

Raw distance: Normalized distance: 1 + 0.5 + 0.5 = 2 2 / 5 = 0.4 = 40%

$$2 / 5 = 0.4 = 40\%$$

Aggregated distance

 Example: calculate pronunciation differences between Grouw and Haarlem dialects for 6 words:

	Grouw	Haarlem	cost	max.	norm.
				cost	cost
work	uyrk	υεrək	1.5	4.5	0.33
ship	skıp	sxip	1	4	0.25
finger	fıŋər	vıŋər	1	5	0.2
wine	υin	υείη	0.5	3.5	0.14
house	huz	hœys	0.5	3.5	0.14
milk	mɔlkə	mεlək	2	5	0.4
			6.5		1.46

Raw distance: Normalized distance:

$$6.5/6 = 1.08$$
 $1.46/6 = 0.243 = 24.3\%$

Software

- Visual Dialectometry (VDM).
- DiaTech: related to VDM, but it is a webapp and includes also Levenshtein distance.
- RuG/L⁰⁴: set of functions to be entered as command line commands using a keyboard.
- Gabmap: webapp at gabmap.nl, Docker version at https://github.com/pebbe/Gabmap-docker.
- Python packages: editdistance, LingPy.
- R packages: iL04 (http://www.let.rug.nl/~kleiweg/L04/R/), stringdist, alineR, dialectR (at GitHub).

- Goal: make dialectometry as easy as possible:
 - Levenshtein Edit Distance App,
 - refers to 'Lampje' or Gyro Gearloose's 'Little Helper' in Donald Duck comics; 'Lampje' is Dutch for Little Lamp (LED = Light Emitting Diode = lamp).
- Availability:
 - https://www.led-a.org
 - example data sets under 'Examples'.

Pictures of Gyro and Helper are taken from https://donaldduck.fandom.com/nl/wiki/Willie_Wortel and https://donaldduck.fandom.com/nl/wiki/Lampje, CC BY-SA 3.0 license.

Distance measures

- Binary item comparison (Séguy 1973)
- Levenshtein distance plain indel is 0.5 or 1
- Levenshtein distance IPA feature-based (Almeida & Braun) indel scaled between 0 and 0.5 or joint scaling of substitutions and indels between 0 and 1.
- Levenshtein distance PMI-based
 Wieling, Prokić & Nerbonne (2009), Wieling (2012)

VC-sensitive

The minimum cost is based on an alignment in which:

- a vowel matches with a vowel
- a consonant matches with a consonant

Optionally the user can allow:

- [j], [w], [i] or [u] to match with anything
- [ə] (schwa) or [e] to match with a sonorant

Bolognesi & Heeringa (2002), Heeringa (2004), Wieling et al. (2009)

Levenshtein

- Both 'raw' and normalized Levenshtein distances can be calculated.
- It is possible to measure distances due to differences in only vowels or only consonants (indels or substitutions).

Input: transcriptions

- Excel sheet (Microsoft Excel/LibreOffice Calc).
- The transcriptions should be in IPA Unicode (use https://westonruter.github.io/ipa-chart/keyboard/)
- Multiple transcriptions per item are possible.

Format (1)

Rows are locations, columns are items

	1	2	3	4	5	6	7
1		work	ship	finger	wine	house	milk
2	Delft	wεrək	sxip	vɪŋər	υæ·ĭn	hœ.z	mεlĕk
3	Grouw	υγrk	skip	fɪŋər	υin	hu z	mo [·] lkə
4	Haarlem	υεrək	sxip	vɪŋər	บะin	hœўs	mεlək
5	Hattem	υęrĕk	sxip	vɪŋəř	υi [.] n	ys	mεlĕk
6	Lochem	υαrĕk	sxip	vɪŋəř	υin	hys	mεlĕk

Format (2)

Rows are items, columns are locations

	1	2	3	4	5	6
1		Delft	Grouw	Haarlem	Hattem	Lochem
2	work	wεrək	υγrk	υεrək	υęrĕk	υαrĕk
3	ship	sxip	skip	sxip	sxip	sxip
4	finger	vɪŋər	fɪŋər	vɪŋər	vɪŋəř	vɪŋəř
5	wine	υæ·ĭn	υin	υεin	υi [.] n	υin
6	house	hœ·z	hu z	hœўs	ys	hys
7	milk	mεlĕk	moʻlkə	mɛlək	mεlĕk	mεlĕk

With LED-A can be processed ...

- vowels, pulmonic consonants and voiced implosives;
- primary stress, secondary stress;
 by processing ' and , as segments
- extra short, normal, half long, long;
 by preprocessing: ă → a, a → aa, a → aaa, a: → aaaa
- aspirated, labialized, palatalized, velarized, pharyngealized, nasalized;
 by averaging with h, w, j, γ, γ, n respectively.

Maps

 Easy to create maps, only coordinates are required (no outline required).

Coordinates

Rows are items, columns are locations

	1	2	3	
1		lat	long	
2	Delft	52.00667	4.35556	
3	Grouw	53.09456	5.83745	
4	Haarlem	52.38084	4.63683	
5	Hattem	52.475	6.06389	
6	Lochem	52.15917	6.41111	

Coordinates are taken from GeoNames.

Output

Output: individual word pair distances and/or aggregated distances.

Visualization

Example data set:

- Reeks Nederlandse Dialectatlassen, compiled by E. Blancquaert and W. Pée.
- Texts from 1922–1975, 1956 local dialects, 139 sentences each.
- We selected 360 dialects, 166 words.
- Standard Dutch and Standard German were added.

Measurements

- We measure distances using PMI-based Levensthein distance.
- Length and diacritics are processed.

Distribution of the 360 varieties in the Dutch dialect area.

Beam maps

- Introduced by Goebl (\pm 1983).
- The locations of local dialects are connected to each other by straight lines in a map.
- Darker lines represent smaller distances, lighter lines represent larger distances.

Beam map showing Levenshtein distances among local dialects. Darker lines represent larger distances.

Cluster analysis

- Introduced by Goebl (\pm 1982) in dialectometry.
- Group objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). (Wikipedia)

Cluster methods

In LED-A five cluster methods are available:

- Single-Linkage: chaining effect, no clear group structure.
- Complete-Linkage: compact clusters of about equal size.
- UPGMA: results reflect the original distances most closely.
- WPGMA: in case of a more irregular distribution.
- Ward's method: minimizes the variance in the clusters; it usually creates compact, even-sized clusters (Szmrecsanyi, 2012)

Dendrogram obtained using Ward's method. The tree structure explains 50.8% of the variance in the original distances.

Eleven groups derived from the dendrogram that was obtained using Ward's method.

Multidimensional scaling

- Introduced by Embleton (1993) in dialectometry.
- Put the local dialects on a map so that the distances in two-dimensional space reflect the distances in the matrix as closely as possible.

Multidimensional scaling methods

- Classical (metric): original algorithm, proposed by Togerson (1952).
- Kruskal's non-metric: results reflect the original distances most closely.
- Sammon's non-linear (metric) mapping: points are shown more dispersed.
- **t-SNE** (t-distributed stochastic neighbor embedding): reveals (otherwise hidden) patterns, is stochastic.

Using Kruskal's non-metric MDS the 362 dimensions are reduced to 2. They explain 78.5% of the variance in the original distances.

Multidimensional scaling

- With MDS scaling to three or more dimensions is possible as well.
- Scale to three dimensions so that each local dialect is represented by three values x, y and z.
- Let x be the intensity of red, y be the intensity of green and z
 be the intensity of blue.
- Introduced by Nerbonne, Heeringa & Kleiweg (1999).

RGB map where x determines inversely the intensity of red, y determines the intensity of blue and z determines the intensity of green.

Reference point maps

- Introduced by Goebl (\pm 1982).
- Compare local dialects to a reference point (e.g. standard language, proto-language).
- Coloring according to rainbow scheme: red is most similar, blue is most distant.

Dutch dialects compared to Standard Dutch. Red dots represent strongly related dialects, blue dots more remote ones.

Segment distances

- Show feature-based or PMI-based segment distances.
- Reduce the distances among the segments to two dimensions with Kruskal's non-metric MDS.

Vowels

dimension 1

Consonants

Thanks!

Thanks!

The slides are available at: led-a.org/slides.pdf